
Acki Nacki Tokenomics

Mitja Goroshevsky, Nikita Sattarov

September 2024

1 Abstract

We present Acki Nacki network Tokenomics, optimized for maximum decentralization from the start of the network,
security and fairness.

For Acki Nacki technical description please refer to: “ACKI NACKI: a Probabilistic Proof-of-Stake consensus protocol
with fast finality and parallelization” paper in Volume 14586 of the Lecture Notes in Computer Science series by
Springer Science [1].

In Acki Nacki, there are five types of Network Participants: Block Producer, Block Keeper, Block Verifier (or
Acki-Nacki), Block Manager, and Mobile Verifier. Throughout this paper, we sometimes refer to the first three
participants — Block Producer, Block Keeper, and Block Verifier — as ’Block Keepers’ when we don’t need to address
their roles specifically.

2 Parameters

Since the construction and analysis of Tokenomics require a deep delving into mathematical theory, this article contains
a large number of formulas, variables, and their dependencies. Therefore before each block of formulas, a brief
description of the variables used in that block is provided. Additionally, a table with descriptions of all the variables
used in this document is included in the Appendix "Glossary" A.

3 Quick Facts

Token Supply Emission Function

NACKL 10.4 B Curve, final Network security

SHELL Unlimited Pledge Computation

4 Separation of Tokens

In Acki Nacki there are two tokens: a network token and a computation token.

The separation allows us to have two distinctive properties of Acki Nacki that is not possible under a one common
token design.

In Proof-of-Stake systems the security of the network and the participation incentives are largely attributed to the
network token price increase over time. This is achieved by bending the Supply/Demand curve in favor of Demand.
It can be done by increasing the Token Utility and Decreasing the Supply. But when there is only one token which
is used for both security guarantees and network transaction fees its utility will be hampered by its increasing price,
which happens with every blockchain we know. To tackle this problem Bitcoin is promoting the Lightning network,
Ethereum is trying to balance the gas price and Solana is processing large amounts of transactions with very low fees.
We don’t believe any of these approaches work over time and we see problems with all of them: Lightning Network
adoption rate is faltering, Ethereum transactions are so expensive, most of the people using L2 networks to transact
Ethe and Solana can’t regulate its network usage effectively leading to network stoppage and spam.

1

We take a different approach by introducing two interconnected tokens separately created to optimally perform each
of the functions: network usage and network security.

Computation token, called SHELL — is designed to pay for network usage, and NACKL coin — designed to guarantee
network security.

NACKL Coin — is used for Staking and provides a claim for a share of Shell revenues therefore will accumulate value
over time.

SHELL Token — designed in such a way that its price will never increase, it can only decrease, but will eventually
correct itself, as described in more details below (see “SHELL — Equal or Less” 13).

5 NACKL Tokenomics

5.1 Proof Of Stake

In Acki Nacki there is no predetermined Stake Interest rate. Simple and clear — there are no staking rewards. Like in
Bitcoin the rewards are paid for Network Participation which comprises several activities like Block Production, Block
Verification and Transaction Processing, but unlike Bitcoin all the Rewards are distributed proportionally between all
Network Participants within a common Epoche (see section "Rewards" 6). If Network Participants are not performing
according to current Acki Nacki Network rules or boundaries they may be excluded from the network, penalized or
slashed depending on the type of rule they violate. This is according to the main idea of Proof-of-Stake Protocols [3].

5.2 Delegation

Acki Nacki is trying to avoid delegation of stakes as much as possible. There are special mechanisms in place to
make it not economical or not secure to delegate NACKL Token for staking by other Block Keepers: Block Keeper
Epoche contract only accepts messages signed by a Block Keeper private key, therefore making it impossible to create
decentralized pools and perform staking delegation. Of course Block Keepers can run off-chain services to obtain
stakes from investors, but this is no longer a network concern.

Instead there is a special mechanism to include regular participants into a protocol without a need to become a Block
Keeper and have special server equipment etc. (see section “Mobile Verifiers” 11) Yet it is important to mention
that it’s not based on staking pools or delegation either, as mobile verifiers perform very particular and real security
verification contributing to network security guarantees.

5.3 Fairness

Acki Nacki is "fair" protocol, where fairness is defined per Pass and Shi [4]: "A blockchain protocol has n-approximate
fairness if, with overwhelming probability, any honest subset controlling f fraction of the compute power is guaranteed
to get at least a (1− n)f fraction of the blocks in a sufficiently long window".

The fairness in Acki Nacki is achieved by the following logical construction:

Each Validator receives proportional reward regardless of if they produced blocks or not. The reward depends solely on
their honest participation in the network as described below. Thus the network participants are not rewarded specifically
for producing the block but for participating in all stages of block livecycle from the creation and up to the finality.

Because in the Asynchronous transaction model the particular arrangement of incoming external transactions does
not determine the execution order of subsequent internal transactions, there is no apparent calculable profit extraction
(MEV) opportunity exists for a Block Producer. For example frontrunning is highly improbable and can instead result
in a loss. Since the chances of such loss are high enough no rational actor should try. In Acki Nacki therefore there is
simply no game to play around MEV extraction, which in turn makes the equal block rewards model possible.

Therefore in Acki Nacki the fairness model that usually applies to most of the networks does not hold true [2]. We
therefore can consider Acki Nacki a “fair protocol” at least according to the above definition.

6 Rewards

The curve of the number of minted tokens in Acki Nacki is precomputed and known in advance. This curve is an
exponential saturation function. It determines the reward for network participants.

The reward in Acki Nacki is divided among three groups of network participants: Block Keepers, Mobile Verifiers,

2

and Block Managers. The reward for each participant is awarded based on individual Epochs of a certain duration.
It is precomputed before the start of the individual Epoch and is awarded at the end of that Epoch. The distribution
of the reward within each group of network participants is described in more detail in the sections "Block Keeper
Reward" 6.3, "Mobile Verifier Reward" 11, and "Block Manager Reward" 12.

6.1 General Reward

The General Reward for network participation across the entire network is calculated per second to eliminate dependency
on blocks and thereby prevent potential spam activity.

General Reward Per Second is an ever decreasing function of token supply calculated as following:

• t — Time (in seconds) since the network launch

• TotalSupply — Total Supply — The total number of tokens to be minted

• GRPS(t) — General Reward Per Second — reward for network participation per one second for all network
participants at time t

• TMTA(t) — Total Minted Token Amount — The number of minted tokens at time t

• TTMT — Total Token Minting Time — The expected time for minting the last fraction of token in seconds

• TMTAFC — Total Minted Token Amount Function Coefficient — The parameter regulating the decay rate of the
Total Minted Token Amount function

• TBBKRPS(t) — Total Base Block Keeper Reward Per Second — the fraction of the reward GRPS allocated to
Block Keepers.

• TMVRPS(t) — Total Mobile Verifier Reward Per Second — the fraction of the reward GRPS allocated to Mobile
Verifiers.

• TBMRPS(t) — Total Block Manager Reward Per Second — the fraction of the reward GRPS allocated to Block
Managers.

• BBKRFC — Base Block Keeper Reward Function Coefficient — coefficient that determines the fraction of the
reward GRPS allocated to Block Keepers.

• MVRFC — Mobile Verifier Reward Function Coefficient — coefficient that determines the fraction of the reward
GRPS allocated to Mobile Verifiers.

• BMRFC — Block Manager Reward Function Coefficient — coefficient that determines the fraction of the reward
GRPS allocated to Block Managers.

u = − 1

TTMT
· ln
(

TMTAFC

TMTAFC+ 1

)
(1)

TMTA (t, TotalSupply, TTMT, TMTAFC) = TotalSupply · (1 + TMTAFC) · (1− exp (−ut)) (2)

GRPS (t, TotalSupply, TTMT, TMTAFC) = TotalSupply · (1 + TMTAFC) · (exp (−ut)− exp (−u (t+ 1))) (3)

The resulting reward is divided among the three groups of network participants in predetermined proportions,
calculated based on each group’s contribution to the network’s operation.

BBKRFC = 0.675

MVRFC = 0.225

BMRFC = 0.1

BBKRFC+MVRFC+ BMRFC = 1

(4)

TBBKRPS = BBKRFC · GRPS = 0.675 · GRPS

TMVRPS = MVRFC · GRPS = 0.225 · GRPS

TBMRPS = BMRFC · GRPS = 0.1 · GRPS

(5)

3

Figure 1: Comparison plot of Bitcoin and Acki Nacki NACKL token supplies per year

6.2 Reputation Coefficient

For Block Keepers, the reward they receive from GRPS is called the Base Reward. This is because on top of the fair
block reward, each Block Keeper may receive a Reputation Premium Reward called the Reputation Coefficient. This
reward is calculated based on the time the particular Block Keeper, authenticated as Public Key of the cryptographic
key pair, controlling the Block Keeper’s wallet has continuously participated in a protocol and restaked their tokens.

The reputation multiplicator can provide much greater rewards than Base Reward, thus providing incentives for Block
Keepers to keep uninterrupted network validation.

If a Block Keeper skips at least one Epoch, their Reputation Coefficient is immediately reset to the minimum possible
one.

• RepCoef — Reputation Coefficient — Additional rewards granted to a Block Keeper for continuous validation

• BKRT — Block Keeper Reputation Time — The time during which the Block Keeper has been continuously
running validation Epochs

• minRC — Minimal Reputation Coefficient

• maxRC — Maximal Reputation Coefficient

• maxRT — Maximal Reputation Time — The time it takes for the Block Keeper to accumulate maximum
reputation for continuous validation

• ARFC — Adjustment Reputation Function Coefficient — The parameter regulating the rate of reputation growth
over time

RepCoef (BKRT, minRC, maxRC, maxRT, ARFC) =



minRC+
(maxRC−minRC)

1− 1
ARFC

·
(
1− exp

(
− ln (ARFC)

maxRT
· BKRT

))
,

0 ≤ BKRT < maxRT

maxRC,

BKRT ≥ maxRT

(6)

4

Figure 2: Plot of the Reputation Coefficient depending on the continuous validation time by a particular Block
Keeper

6.3 Block Keeper Reward

As mentioned earlier, each network participant receives a reward for each Epoch. For Block Keepers, we will refer to
this Epoch as the Validation Epoch.

We assume that if all network participants act honestly, the reward should be distributed fairly among them, regardless
of whether the Block Keeper performs as a Block Producer, Acki-Nacki, or Block Keeper during that Epoch. Thus,
the Block Keeper’s reward will depend only on their stake and Reputation Coefficient.

Therefore, the Block Keeper’s reward function BKRPS will be calculated as follows:

• BKRPS — Block Keeper Reward Per Second — the reward earned by a Block Keeper per second of validation,
depending on their stake and current Reputation Coefficient

• BKStake — Block Keeper Stake — the specific amount of tokens that a Block Keeper has staked in order to
participate in validation

• TotalBKStake — Total Block Keeper Stake — the sum of all Block Keeper stakes at time

• TBBKRPS(t) — Total Base Block Keeper Reward Per Second — the fraction of the reward GRPS allocated to
Block Keepers

• RepCoef — Reputation Coefficient — Additional rewards granted to a Block Keeper for continuous validation

• BKRT — Block Keeper Reputation Time — The time during which the Block Keeper has been continuously
running validation Epochs

• tval — Validation Epoch Start Time — the time in seconds that has passed from the moment the network was
launched until the start of a particular Validation Epoch

• BKRPVE — Block Keeper Reward per Validation Epoche — the reward received by a Block Keeper for one
Validation Epoch

• BKED — Block Keeper Epoch Duration — the duration of one validation Epoch in seconds

BKRPS (TBBKRPS, BKStake, TotalBKStake, RepCoef) = TBBKRPS · BKStake

TotalBKStake
· RepCoef (7)

5

6.3.1 Block Keeper Epoch Reward

Since a Block Keeper receives a reward at the end of each Validation Epoch, let us convert the reward per second of
validation into a reward per Epoch.

To ensure that each Block Keeper can easily calculate their reward for the Validation Epoch at the start of the
Epoch, we lock the parameters BKStake, TotalBKStake, and RepCoef at the beginning of the Epoch and don’t change
them during the Epoch. Since the number of Block Keepers in the network remains approximately constant during a
Block Keeper’s Epoch, the case where the parameters BKStake and TotalBKStake are fixed at the start of the Epoch
is practically identical to the case where these parameters are dynamically recalculated throughout the Epoch. In
other words, for a reasonable Block Keeper, it is disadvantageous to choose the moment when he starts an Epoch to
maximize their reward, as the time spent waiting will cause them to lose more reward than they could potentially
earn, and they will also reset their accumulated Reputation Coefficient. Additionally, since the Maximal Reputation
Coefficient accumulates over a much longer period of time than the duration of a Validation Epoch, it does not make
practical sense to recalculate it during an Epoch. It is sufficient to update the value of the Reputation Coefficient
when transitioning from one Epoch to the next. For the same reason, it does not make practical sense to recalculate
the value of the TBBKRPS function during the Validation Epoch.

Thus, let us calculate the reward for a single Block Keeper for the Validation Epoch:

BKRPVE = TBBKRPS(tval) ·
BKStake(tval)

TotalBKStake(tval)
· RepCoef(BKRT(tval)) · BKED (8)

If a Block Keeper, for any reason, validates longer than the expected duration of a single Epoch, additional time spent
as a Block Keeper will be added to the parameter BKED.

7 Free Float

Acki Nacki largely follows a well-researched Bitcoin free float model. We define Bitcoin’s Free Float as the number of
tokens that have been in circulation over the last year. While in Bitcoin the free float average is around 40%, Acki
Nacki will theoretically experience exponential saturation growth from nearly 0 to 1

3 , while (1− Free Float) of tokens
(up to a maximum of 2

3) will be locked in staking.

Let’s construct the exponential saturation function for the Free Float (as a percentage of the total number of minted
tokens):

• maxFreeFloatFrac — Maximal Free Float Fraction — Maximal fraction of Free Float of Total Supply

• FreeFloatFrac(t) — Free Float Fraction — The current fraction of Free Float of Total Supply

• FFFC — Free Float Function Coefficient – The parameter regulating the decay rate of the FreeFloatFrac function

• TTMT — Total Token Minting Time — The expected time for minting the last fraction of token

uFF = − 1

TTMT
· ln
(

FFFC

1 + FFFC

)
(9)

FreeFloatFrac (t, maxFreeFloatFrac, TTMT, FFFC) = maxFreeFloatFrac · (1 + FFFC) · (1− exp (−uFF · t)) (10)

If Block Keepers do not restake their stakes and withdraw them, thereby increasing the Free Float, the reward remains
fixed. Meaning the remaining Block Keepers will start receiving more rewards, which will reduce their motivation to
withdraw their stakes even if the token price decreases. Because the min stake will decrease, allowing other Block
Keepers to stake their tokens if they couldn’t do so before (see Section "Block Keeper Min Stake" 8).

6

Figure 3: Plot of the total number of minted tokens and free float (in tokens) over time

Figure 4: Comparison plot of Bitcoin and Acki Nacki NACKL Free Floats (as a percentage of the current Supply)
per year

7

Figure 5: Comparison plot of Bitcoin and Acki Nacki NACKL Free Floats (as a percentage of the Total Supply) per
year

8 Block Keeper Min Stake

Because Acki Nacki is a scalable computational network the execution load parameter plays a significant role in its
tokenomics.

Acki Nacki is a multithreaded execution environment. Threads grow when computation demand on the network grows,
more Block Keepers are required to process the network load. Usually one would argue the rewards should grow to
lure more Block Keepers into the network. But that won’t work because of a “spam attack”. In the Spam Attack
the Block Keeper may create spam transactions to artificially increase network load so that threads are multiplied to
inflate the block rewards. And since in Acki Nacki the payment for computations (electricity) is stable or less (see
“SHELL — stable or less coin” 13) the arbitrage between the compute expanse and block reward is always beneficial
to the attacker. Therefore no increase of the Block Reward is possible. Instead the minimum required stake is lowered
automatically. Thus allowing lower barriers to entry for new Block Keepers to provide their computing power to
participate in a slice of a block rewards. And since Reputation Coefficient plays a much greater role in the Block
reward for each Block Keeper over time, it provides a lucrative opportunity for profitable network participation.

• NeedBKNum(t) — Needed Block Keeper Number — The number of Block Keepers required in the network at
time t according to the number of threads

• baseMinBKStake(t) — Base Minimal Block Keeper Stake — Minimal Stake when the current number of Block
Keepers equals the necessary number of Block Keepers

• FreeFloatFrac(t) — Free Float Fraction — The current fraction of Free Float of Total Supply

• TSTA(t) — Total Staked Token Amount — The total number of tokens staked in the network at time t

• BKSFC — Block Keeper Stake Function Coefficient — The coefficient that determines the expected fraction of
tokens that will be staked by Block Keepers out of the Total Staked Token Amount

• MVSFC — Mobile Verifier Stake Function Coefficient — The coefficient that determines the expected fraction of
tokens that will be staked by Mobile Verifiers out of the Total Staked Token Amount

• BMSFC — Block Manager Stake Function Coefficient — The coefficient that determines the expected fraction of
tokens that will be staked by Block Managers out of the Total Staked Token Amount

• TMTA(t) — Total Minted Token Amount — The number of minted tokens at time t

8

• BBKRFC — Base Block Keeper Reward Function Coefficient — coefficient that determines the fraction of the
reward GRPS allocated to Block Keepers

• MVRFC — Mobile Verifier Reward Function Coefficient — coefficient that determines the fraction of the reward
GRPS allocated to Mobile Verifiers

• BMRFC — Block Manager Reward Function Coefficient — coefficient that determines the fraction of the reward
GRPS allocated to Block Managers

• tval — Validation Epoch Start Time — the time in seconds that has passed from the moment the network was
launched until the start of a particular Validation Epoch.

The total number of staked tokens is easily calculated from the known total number of minted tokens and the current
free float:

TSTA(t) = TMTA(t) · (1− FreeFloatFrac(t)) (11)

Since in Acki Nacki, not only Block Keepers stake but also Mobile Verifiers and Block Managers (see sections "Mobile
Verifier Min Stake" 11.4, "Block Manager Min Stake" 12.3), let the distribution of their stake from the total number
of staked tokens be the same as the reward distribution (4):

BKSFC : MVSFC : BMSFC = BBKRFC : MVRFC : BMRFC = 0.675 : 0.225 : 0.1

BKSFC+MVSFC+ BMSFC = 1

(12)

From which it follows:

BKSFC = 0.675

MVSFC = 0.225

BMSFC = 0.1

(13)

Since each Validation Epoch for a Block Keeper requires time to verify the correctness of all Block Keepers’ actions,
half of the staked tokens is locked in the current validation cycle, and the other half of the staked tokens is locked
in the cooling period for slashing calculation. Therefore, each Block Keeper effectively needs to have two stakes to
validate.

Let’s calculate baseMinBKStake and minBKStake for Block Keepers, taking into account that the minimum stake
should be calculated at the start of the Validation Epoch:

baseMinBKStake (tval, TMTA, FreeFloatFrac, NeedBKNum, BKSFC) = BKSFC · TSTA(tval)
2

· 1

NeedBKNum(tval)
(14)

9

Figure 6: Plot of baseMinBKStake over time since the network’s launch with the necessary number of Block Keepers
set to 10, 000

9 Expected APR for Block Keepers

While we are not keen to use terms like Annual Percentage Reward while talking about Acki Nacki staking, it is
still important to provide such indicative calculations on the rewards Block Keeper receive for performing Network
Participation work in comparison with NACKL Stake they provide as security bond. Please note that we omit all
direct Block Keeper operation costs as they are compensated by SHELL Token as described below.

Figure 7: APR plot for the first 5 years after network launch

10

Figure 8: APR plot over time

Figure 9: APR Plot with a logarithmic Y-axis over time

10 Security Guarantees

The main function of NACKL Token is to provide Network Security guarantees and now we will discuss in more details
how this function is performed.

Lemma 1. Total of NACKL min stakes for Block Keepers will make it virtually impossible to attack the network because
the sum of money that will be required to collect it for successful attack with probability set by network parameters does
not exist in the world economy.

11

Proof.

• BKNum — number of Block Keepers

• ANNum — average number of Acki-Nacki per block

• AtNum —number of attestations required for block finalization

• MalBKNum — expected number of malicious Block Keepers

• SAP — successful attack probability in a single attempt

• FFT — current Free Float (in tokens)

• FFTReduction — The coefficient describing how much the Free Float (in tokens) decreased after purchasing tokens
for the attack

• MAA — Maximum Attack Attempts — Maximum number of attack attempts that the attacker can perform

• BNP — Breaking Network Probability — The probability of performing a successful attack on the network in
MAA attempts

• MalStakeNum — Malicious Stake Number — The number of stakes that a malicious Block Keeper needs to
purchase for an attack with a probability of BNP

• minBKStake(t) — Minimal Block Keeper Stake — Current minimal Block Keeper stake depending on the
particular difference between the current number of Block Keepers and the required number of Block Keepers

Assumption: our Bitcoin analysis of free float contribution to the price increase shows that a decrease by 5% of free
float leads to doubling of the Bitcoin price over time regardless of existing market demand.1

Let’s consider how the probability of an attack and the reduction of Free Float depend on each other. For simplicity,
let’s consider the case without Mobile Verifiers, as their presence would only reduce the probability of an attack.

The probability of a successful attack in one attempt:

SAP (BKNum, ANNum, AtNum, MalBKNum) =

(
1− ANNum

BKNum

)AtNum−MalBKNum

(15)

The probability that the attacker successfully breaks the network in i attempts is given by: (1− SAP)i−1 · SAP.

Let’s sum this probability over all possible numbers of attempts by the attacker and obtain the probability BNP:

BNP (SAP, MAA) =
MAA∑
i=1

(1− SAP)i−1 · SAP = 1− (1− SAP)MAA (16)

FFTReduction =
FFT−MalStakeNum ·minBKStake

FFT
(17)

MAA =

⌊
MalStakeNum

MalBKNum

⌋
(18)

BNP (BKNum,ANNum,AtNum,MalBKNum,MalStakeNum) = 1−

(
1−

(
1− ANNum

BKNum

)AtNum−MalBKNum
)⌊MalStakeNum

MalBKNum ⌋

(19)

Note that the BNP (MalBKNum) function will be concave downwards, meaning that a malicious Block Keeper benefits
either from attacking many times with a single malicious node or attacking once with multiple malicious nodes.

From this it follows that:
1This research will be published separately.

12

BNP (BKNum,ANNum,AtNum,MalStakeNum) =

= max

1−

(
1−

(
1− ANNum

BKNum

)AtNum−1
)MalStakeNum

,

(
1− ANNum

BKNum

)AtNum−MalStakeNum
 (20)

If the BNP parameter is known, then MalStakeNum = min (MalStakeNum1,MalStakeNum2), where

BNP = 1−

(
1−

(
1− ANNum

BKNum

)AtNum−1
)MalStakeNum1

(21)

and

BNP =

(
1− ANNum

BKNum

)AtNum−MalStakeNum2

. (22)

Therefore

MalStakeNum (BNP, BKNum, ANNum, AtNum) = min

 ln (1− BNP)

ln
(
1−

(
1− ANNum

BKNum

)AtNum−1
) , AtNum− ln (BNP)

ln
(
1− ANNum

BKNum

)

(23)

Even if we do not take into account that the minimum stake increases when the number of Block Keepers exceeds the
required amount, we will see a significant reduction in Free Float:

1. In the case of an attack with multiple attempts, due to token burning after slashing a malicious network
participant, which will iteratively increase the cost of the attack.

2. In the case of a one-time attack at the moment of purchasing tokens for the attack. Every 5% reduction in Free
Float will double the cost of the attack.

Example calculation of MalStakeNum with BKNum = 1000, ANNum = 40, AtNum = 800, BNP = 10−8:

MalStakeNum = min

 ln
(
1− 10−8

)
ln
(
1−

(
1− 40

1000

)800−1
) , 800− ln

(
10−8

)
ln
(
1− 40

1000

)
 = min (1452770, 349) = 349 (24)

With 1000 Block Keepers, FFT = 2, 253, 808, 534 tokens, minBKStake = 2, 253, 808 tokens:

FFTReduction =
2253808534− 349 · 2253808

2253808534
= 0.65 (25)

This reduction in Free Float increases the token price by 2ln(0.65)/ln(0.95) = 28.38 = 331.31 times, making it practically
impossible to collect that much money to purchase tokens for the attack.

11 Mobile Verifiers

11.1 Motivation

Ideally we would want a protocol that everyone can participate in without a need to run expansive server hardware.
That would dramatically increase network security and decentralization. From the other side such a network would
not be very performant, fast and scalable because of network and computing power limitation of mobile devices.

To solve this we introduce the Mobile Verifier role to Acki Nacki. A mobile user would not need to validate every
block on the network, which would be technically impossible, but instead such a user could participate in the protocol
as a Verifier by validating transactions in subtrees of accounts, occasionally. Since there is no way to know when such
a user would choose to Verify, it would provide additional security guarantees to the network, dramatically decreasing
the probability of attack on top of the already great security guarantees of the main Acki Nacki Protocol.

13

• BKNum — number of Block Keepers

• ANNum — average number of Acki-Nacki per block

• AtNum — number of attestations required for block finalization

• MalBKNum — expected number of malicious Block Keepers

• MVNum — number of Mobile Verifiers

• MalMVNum — expected number of malicious mobile verifiers

• λMV — verification frequency by Mobile Verifiers — fraction of blocks verified by Mobile Verifiers

• MVRPS — Mobile Verifier Reward per Second (accrued only on the condition of owning at least one Boost)

• TMVRPS(t) — Total Mobile Verifier Reward Per Second — the fraction of the reward GRPS allocated to Mobile
Verifiers.

• MVStake — Mobile Verifier Stake

• TotalMVStake — Total Mobile Verifier Stake of all Block Keepers who have at least one boost

• BoostCoef — Boost Coefficient — a coefficient that determines the fraction of the reward allocated to a particular
Mobile Verifier based on their position in the sorted in ascending order list of all Mobile Verifiers by the number
of boosts. The sum of BoostCoef for all Mobile Verifiers equals 1.

• SAP — successful attack probability in a single attempt

• SAPMV — successful attack probability in a single attempt with Mobile Verifiers

SAP (BKNum, ANNum, AtNum, MalBKNum) =

(
1− ANNum

BKNum

)AtNum−MalBKNum

(26)

SAPMV (BKNum, ANNum, AtNum, MalBKNum, λMV, MVNum, MalMVNum) =
(
1− ANNum

BKNum

)AtNum−MalBKNum ·

· (1− λMV)
MVNum−MalMVNum

(27)

For the reference, next Figs. are illustrating the successful attack probability from a number of malicious network
participants for Bitcoin, pBFT, and Acki Nacki protocols with a total of 1000 Block Keepers.

To calculate the successful attack probability in Bitcoin, we use the commonly accepted number of blocks for
probabilistic ’finality’, which is 6. For calculating the successful attack probability in Acki Nacki, we use the number
of Acki-Nacki set to 40 and the number of Attestations set to 80.

14

100 200 300 400 500 600 700 800 900 1000
Number of malicious network participants

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es
sf
ul
 a
tta

ck
 p
ro
ba

bi
lit
y

Bitcoin
pBFT (667 validating nodes)
Acki Nacki (40 validating nodes)

Figure 10: Comparison of successful attack probabilities in Bitcoin, pBFT and Acki Nacki

100 200 300 400 500 600 700 800 900 1000
Number f malici us netw rk participants

10−16
10−14
10−12
10−10
10−8
10−6
10−4
10−2

11

Su
cc
es
sf
ul
 a
tta

ck
 p
r
ba

bi
lit
y

Bitc in
pBFT (667 validating nodes)
Acki Nacki (40 validating nodes)

Figure 11: Fig. 10 with log-scaled y-axis

11.2 Mobile Verifier Reward

Mobile Verifiers will compete in an online game, which involves earning Boosts, to secure a place in the mobile verifiers
list that determines the fraction of block reward they will receive:

MVRPS (TMVRPS, BoostCoef) = TMVRPS · BoostCoef (28)

11.3 Boost Coefficient

Our task will be to determine BoostCoef for each Mobile Verifier. To do this, we will create an exponential curve
consisting of several sub-curves such that:

15

1. The domain of the curve will be Dom(f) = [0, 1], allowing us to distribute the Total Mobile Verifiers Reward
regardless of the number of Mobile Verifiers.

2. The integral over the entire domain of the curve equals 1, so we can divide the Total Mobile Verifiers Reward
among all Mobile Verifiers.

3. • The first 30% of Mobile Verifiers will receive almost no reward.

• The middle 40% will receive 30% of the total reward.

• The last 30% with the most boosts will receive 70% of the total reward.

11.3.1 Form of the Exponential Curve

Figure 12: Boost Coefficient Curve

An exponential curve with a growth coefficient k, passing through the points (x1, y1) and (x2, y2), is defined as follows:

f(x) = y1 +
(y2 − y1)

(
exp

(
k · x−x1

x2−x1

)
− 1
)

exp(k)− 1
(29)

Thus, we obtain a function with the following input parameters:

• Dot1 = (x1, y1) — The leftmost point of the first sub-curve

• Dot2 = (x2, y2) — The connection point between the first and second sub-curves

• Dot3 = (x3, y3) — The connection point between the second and third sub-curves

• Dot4 = (x4, y4) — The rightmost point of the third sub-curve

• k1 — the growth coefficient of the first sub-curve

16

• k2 — the growth coefficient of the second sub-curve

• k3 — the growth coefficient of the third sub-curve

BoostCoefFunc (x, x1, y1, x2, y2, x3, y3, x4, y4, k1, k2, k3) =



y1 + (y2 − y1) ·

(
exp

(
k1 · (x−x1)

x2−x1

)
− 1
)

exp (k1)− 1
, x1 ≤ x ≤ x2

y2 + (y3 − y2) ·

(
exp

(
k2 · (x−x2)

x3−x2

)
− 1
)

exp (k2)− 1
, x2 ≤ x ≤ x3

y3 + (y4 − y3) ·

(
exp

(
k3 · (x−x3)

x4−x3

)
− 1
)

exp (k3)− 1
, x3 ≤ x ≤ x4

(30)

Let us denote these sub-curves as I, II, and III.

11.3.2 Calculation of Parameters for the Piecewise Exponential Curve

As mentioned earlier (refer to the relevant section), let x1 = 0, x2 = 0.3, x3 = 0.7, and x4 = 1.

We will empirically choose the following parameters for the curves: k1 = 10, y3 = 2, y4 = 8.

The curve starts at the point y1 = 0. This means that a Mobile Verifier with the fewest Boosts receives almost no
reward. (This could be adjusted to provide a very minimal reward, but for simplicity, we’ll leave it as is for now.)

Now we need to find the parameters y2, k2, and k3. To do this, we will calculate the integral for each sub-curve and,
based on point 3 (refer to the relevant section), equate these integrals to the following values:

•
x2∫

x1

Idx = q1 := 0.002, meaning the first 30% of Mobile Verifiers will collectively receive 0.2% of the total reward.

•
x3∫

x2

IIdx = q2 := 0.298, meaning the middle 40% of Mobile Verifiers will collectively receive 29.8% of the total

reward.

•
x4∫

x3

IIIdx = q3 := 0.7, meaning the top 30% of Mobile Verifiers with the most Boosts will collectively receive 70%

of the total reward.

Let’s calculate these definite integrals:

x2∫
x1

I dx =

x2∫
x1

y1 + (y2 − y1) ·

(
exp

(
k1 · (x−x1)

x2−x1

)
− 1
)

exp (k1)− 1
dx = x2y1 − x1y1 +

(exp(k1)− 1− k1) (x1 − x2) (y1 − y2)

(exp(k1)− 1) k1
= q1

x3∫
x2

IIdx =

x3∫
x2

y2 + (y3 − y2) ·

(
exp

(
k2 · (x−x2)

x3−x2

)
− 1
)

exp (k2)− 1
dx = x3y2 − x2y2 +

(exp(k2)− 1− k2) (x2 − x3) (y2 − y3)

(exp(k2)− 1) k2
= q2

x4∫
x3

IIIdx =

x4∫
x3

y3 + (y4 − y3) ·

(
exp

(
k3 · (x−x3)

x4−x3

)
− 1
)

exp (k3)− 1
dx = x4y3 − x3y3 +

(exp(k3)− 1− k3) (x3 − x4) (y3 − y4)

(exp(k3)− 1) k3
= q3

(31)

Let’s construct a system of three equations for the three unknowns y2, y3, and y4:

17



x2y1 − x1y1 +
(exp(k1)− 1− k1) (x1 − x2) (y1 − y2)

(exp(k1)− 1) k1
= q1

x3y2 − x2y2 +
(exp(k2)− 1− k2) (x2 − x3) (y2 − y3)

(exp(k2)− 1) k2
= q2

x4y3 − x3y3 +
(exp(k3)− 1− k3) (x3 − x4) (y3 − y4)

(exp(k3)− 1) k3
= q3

(32)

The analytical solution to this system of equations would be too large to include in this document, so we will
immediately substitute the known parameter values x1, x2, x3, x4, y1, y3, y4, k1, q1, q2, q3 and obtain the following
values for y2, k2, k3:

y2 ≈ 0.066696948409

k2 ≈ 1.8940334

k3 ≈ 18

(33)

Thus, we have obtained the curve with all known parameters.

11.3.3 Calculation of the Boost Coefficient for Different Numbers of Mobile Verifiers

Now, we need to calculate BoostCoef from the known function BoostCoefFunc. For this, we introduce the parameter
for the number of Mobile Verifiers MVNum.

The reward of a Mobile Verifier, who is in the i-th position in the list sorted in ascending order of the number of Boosts,
will be calculated as the integral over the subinterval corresponding to this Mobile Verifier. In other words, we will

divide the interval [0, 1] into MVNum parts, and the i-th Verifier will correspond to the interval
[

i− 1

MVNum
,

i

MVNum

]
.

That is,

BoostCoefi =

i/MVNum∫
(i−1)/MVNum

BoostCoefFunc (x, x1, y1, x2, y2, x3, y3, x4, y4, k1, k2, k3) dx, where i ∈ [1,MVNum] (34)

11.4 Mobile Verifier Min Stake

• TSTA(t) — Total Staked Token Amount — The total number of tokens staked in the network at time t

• TMTA(t) — Total Minted Token Amount — The number of minted tokens at time t

• MVRH — Mobile Verifier Reward History — Amount of tokens that Mobile Verifier have earned during their
entire participation in the network

• minMVStake(t) — Minimal Mobile Verifier Stake — Current minimal particular Mobile Verifier stake

• FreeFloatFrac(t) — Free Float Fraction — The current fraction of Free Float of Total Supply

The size of the Mobile Verifier’s stake does not affect their reward (28), only the presence of the Min Stake on the
Mobile Verifier’s wallet matters. For Mobile Verifiers, there is no point in dynamically adjusting the stake based on
the current number of Mobile Verifiers (as is done for Block Keepers (??)), since it is impossible to determine the
required number of Mobile Verifiers. Therefore, each Mobile Verifier’s Min Stake will be unique and depend solely on
the amount of tokens MVRH they have earned during their entire participation in the network. The Min Stake of a
Mobile Verifier will be a fraction of the MVRH parameter, just as the Total Staked Token Amount TSTA is a fraction
of the Total Minted Token Amount TMTA (11), provided that the Mobile Verifier must have two stakes for the same
reasons as for Block Keepers 8.

minMVStake (t, MVRH, FreeFloatFrac) = MVRH · (1− FreeFloatFrac(t))

2
(35)

If a Mobile Verifier does not have enough tokens in their wallet to place the stake for the next Epoch, their number
of Boosts is reset to zero.

18

11.5 Mobile Verifier Epoch Reward

• MVED — Mobile Verifier Epoch Duration — the duration of one Epoch of Mobile Verifiers in seconds

• MVRPE — Mobile Verifier Reward per Epoche — the reward received by a Mobile Verifier per one Epoch

• BoostCoef — Boost Coefficient — a coefficient that determines the fraction of the reward allocated to a particular
Mobile Verifier based on their position in the sorted in ascending order list of all Mobile Verifiers by the number
of boosts. The sum of BoostCoef for all Mobile Verifiers equals 1.

• TMVRPS(t) — Total Mobile Verifier Reward Per Second — the fraction of the reward GRPS allocated to Mobile
Verifiers

• tverf — Verification Epoch Start Time — the time in seconds that has passed from the moment the network was
launched until the start of a particular Epoch of Mobile Verifiers

The Epoch of Mobile Verifiers, unlike the Epochs of Block Keepers, is common for all Mobile Verifiers. The first
Epoch starts when the network is launched, and after that, the current Block Producer must send a message to the
Epoch contract. If at least MVED seconds have passed since the start of the Epoch, all Mobile Verifiers will receive the
reward for the Epoch MVRPE, and the next Epoch will begin for them. The current BoostCoefficient is locked at the
beginning of each Epoch for its entire duration and updated after the Epoch ends to prevent unnecessary continuous
calculations, as the number of Boosts for Mobile Verifiers changes with high frequency. TMVRPS is locked at the
beginning of the Epoch, as its changes during the epoch are negligible.

MVRPE (tverf , TMVRPS, BoostCoef, MVED) = TMVRPS(tverf) · BoostCoef(tverf) ·MVED (36)

12 Block Managers

The primary function of Block Managers is to provide the user with a blockchain database and to process external
messages. Block Managers receive a portion of the total block reward based on the number of external messages they
process. The reward distribution is structured in such a way that spamming the network with external messages
to increase rewards is not practically beneficial. This is because generating spam external messages requires certain
resources, and the reward increase will slow down significantly if the number of external messages processed by a
specific Block Manager exceeds the average number of processed messages across all Block Managers.

12.1 Block Manager Reward

Block Managers do not have a stake because they do not verify transactions and do not impact network security.
Therefore, their reward depends only on the number of external messages they processed.

• BMRPS — Block Manager’s Reward per Second

• TBMRPS(t) — Total Block Manager Reward Per Second — the fraction of the reward GRPS allocated to Block
Managers.

• ExtMesCoef — External Messages Coefficient — the coefficient that determines the fraction of the reward allocated
to a particular Block Manager based on their position in the sorted in ascending order list of all Block Managers
by the number of processed external messages. The sum of ExtMesCoef for all Block Managers equals 1.

The reward for Block Managers is calculated using the following formula:

BMRPS (TBMRPS, ExtMesCoef) = TBMRPS · ExtMesCoef (37)

12.2 External Messages Coefficient

Let’s determine ExtMesCoef for each Block Manager. To do this, we create a complex curve consisting of several
sub-curves such that:

1. The domain of the curve will be Dom(f) = [0, 1], allowing us to distribute the Total Block Managers Reward
regardless of the number of Block Managers.

19

2. The integral over the entire domain of the curve equals 1, so we can divide the Total Block Managers Reward
among all Block Managers.

3. • The first 10% of Block Managers will receive almost no reward.

• The top 90% will receive almost the entire reward.

12.2.1 Form of the Curve

If we establish a direct proportionality between the reward received by a Block Manager and the number of transactions
they process, some Block Managers may be incentivized to carry out a spam attack on the network with fake
transactions to receive the entire reward. To prevent this, we designed the following ExtMesCoefFunc curve, based on
the model we had developed for Mobile Verifiers.

• Dot1 = (x1, y1) — The leftmost point of the first sub-curve

• Dot2 = (x2, y2) — The connection point between the first and second sub-curves

• Dot3 = (x3, y3) — The rightmost point of the second sub-curve

• k1 — the growth coefficient of the first sub-curve

ExtMesCoefFunc (x, x1, y1, x2, y2, x3, y3, k1) =


y1 + (y2 − y1) ·

(
exp

(
k1 · (x−x1)

x2−x1

)
− 1
)

exp (k1)− 1
, x1 ≤ x ≤ x2

y3 − y2
x3 − x2

· (x− x2) + y2, x2 ≤ x ≤ x3

(38)

Let us denote these sub-curves as I, II.

Figure 13: External Messages Coefficient Curve

12.2.2 Calculation of Parameters for the Piecewise Curve

As mentioned earlier, let x1 = 0, x2 = 0.1, x3 = 1.

To remove the incentive for a spam attack on the network, we analyzed the curve and empirically chose the following
parameter for the curve: y3 = 1.2.

20

The curve starts at the point y1 = 0. This means that a Block Manager with the smallest number of processed external
messages will receive almost no reward.

Now we need to find the parameters y2, k1. To do this, we will calculate the integral for each sub-curve and, based on
point 3, equate these integrals to the following values:

•
x2∫

x1

Idx = q1 := 0.01, meaning the first 10% of Block Managers will collectively receive 1% of the total reward.

•
x3∫

x2

IIdx = q2 := 0.99, meaning the top 90% of Block Managers will collectively receive 99% of the total reward.

Let’s calculate these definite integrals:

x2∫
x1

I dx =

x2∫
x1

y1 + (y2 − y1) ·

(
exp

(
k1 · (x−x1)

x2−x1

)
− 1
)

exp (k1)− 1
dx = x2y1 − x1y1 +

(exp(k1)− 1− k1) (x1 − x2) (y1 − y2)

(exp(k1)− 1) k1
= q1

x3∫
x2

IIdx =

x3∫
x2

(
y3 − y2
x3 − x2

· (x− x2) + y2

)
dx =

1

2
(x3 − x2) (y2 + y3) = q2

(39)

Let’s construct a system of two equations for the two unknowns y2, k1:
x2y1 − x1y1 +

(exp(k1)− 1− k1) (x1 − x2) (y1 − y2)

(exp(k1)− 1) k1
= q1

1

2
(x3 − x2) (y2 + y3) = q2

(40)

For simplicity, we directly substitute the known parameter values x1, x2, x3, y1, y3, q1, q2 and obtain the following
values for y2, k1:

y2 = 1

k1 ≈ 9.99544113
(41)

Thus, we have obtained the curve with all known parameters.

12.2.3 Calculation of the External Messages Coefficient for Different Numbers of Block Managers

Now, we need to calculate ExtMesCoef from the known function ExtMesCoefFunc. For this, we introduce the parameter
for the number of Block Managers BMNum.

By analogy with the Mobile Verifiers, we define the reward for the Block Manager who is in the i-th position in the
list sorted in ascending order of the number of processed external messages, will be calculated as the integral over the
subinterval corresponding to this Block Manager. In other words, we will divide the interval [0, 1] into BMNum parts,

and the i-th Manager will correspond to the interval
[

i− 1

BMNum
,

i

BMNum

]
.

That is,

ExtMesCoefi =

i/BMNum∫
(i−1)/BMNum

ExtMesCoefFunc (x, x1, y1, x2, y2, x3, y3, k1) dx, where i ∈ [1,BMNum] (42)

21

12.3 Block Manager Min Stake

• BMRH — Block Manager Reward History — Amount of tokens that Block Manager have earned during their
entire participation in the network

• minBMStake(t) — Minimal Block Manager Stake — Current minimal particular Block Manager stake

• FreeFloatFrac(t) — Free Float Fraction — The current fraction of Free Float of Total Supply

Similarly to Mobile Verifiers 11.4, the reward of a Block Manager does not depend on the amount of stake they place
but only on the presence of the Min Stake. The Min Stake of each Block Manager is unique and depends solely on
the amount of tokens they have earned during their participation in the network BMRH. As with Block Keepers and
Mobile Verifiers 8, two stakes are required to continuously participate in the network:

minBMStake (t, BMRH,FreeFloatFrac) = BMRH · (1− FreeFloatFrac(t))

2
(43)

12.4 Block Manager Epoch Reward

• BMED — Block Manager Epoch Duration — the duration of one Epoch of Block Managers in seconds

• BMRPE — Block Manager Reward per Epoche — the reward received by a Block Manager per one Epoch

• ExtMesCoef — External Messages Coefficient — the coefficient that determines the fraction of the reward allocated
to a particular Block Manager based on their position in the sorted in ascending order list of all Block Managers
by the number of processed external messages. The sum of ExtMesCoef for all Block Managers equals 1.

• TBMRPS(t) — Total Block Manager Reward Per Second — the fraction of the reward GRPS allocated to Block
Managers

• tmanage — Management Epoch Start Time — the time in seconds that has passed from the moment the network
was launched until the start of a particular Epoch of Block Managers

Similarly to Mobile Verifiers 11.5, the Epoch of Block Managers is common for all Block Managers and starts and
ends after a message is sent to the contract by the Block Producer. ExtMesCoef is calculated each time at the end
of the epoch and reset after Epoch finishing. This means that the reward of a Block Manager depends only on their
position in the sorted in ascending order list of all Block Managers by the number of processed external messages at
the end of the epoch. TVMRPS is locked at the beginning of the Epoch, as its changes during the epoch are negligible.

BMRPE (tmanage, TBMRPS, ExtMesCoef, BMED) = TBMRPS(tmanage) · ExtMesCoef(tmanage + BMED) · BMED (44)

13 SHELL — Equal or Less

SHELL is a network usage token, designed to provide compensation for Block Keepers for their computing resources.
Anyone who wishes to execute a transaction on Acki Nacki needs to pay Block Keepers for their computing resources
and storage. Since main expenses for running a Block Keeper are electricity and network traffic costs and server
amortization (wherever hardware or lease costs), and all of them are paid in fiat currency the SHELL price should try
to reflect those.

SHELL Tokens will be sold via a System Pool in exchange for any currency Block Keepers decided to accept. Block
Keepers will provide liquidity for such exchange and set up a SHELL minting rate for that pair, which will constitute
their collective vote on current conversation price for a particular pair. Any SHELL holder may decide to sell their
unused SHELL tokens which will be placed in the pool setting the price lower, respectively until the supply is not
sold. Therefore the SHELL Token can be sold at the price Block Keepers set up in the Pool, or less. Hence — equal
or less.

All the payments collected for SHELL tokens are then directed into an Accumulator Contract where they are locked.
Any NACKL token holder has a proportional right to the content of the Accumulator Contract. At any time NACKL
holder can decide to burn their tokens and receive the proportional amount locked in Accumulator Contract.

A NACKL holder would rarely (or never) use such a mechanism because most of the time the open market price
of NACKL will be higher than revenues divided by tokens outstanding because of future revenues expectations and
decreasing supply mechanism built into the market price of NACKL.

22

Since all SHELL revenues go to the Accumulator Contract, the amount of Revenue divided by the amount of NACKL
Tokens will constitute the “intrinsic” or a “floor” value of the NACKL. This intrinsic value will always rise while the
NACKL supply will always decrease.

23

A Glossary

Here is a table with all the variables used in the article. The table contains the columns ’Name’, ’Notation’, ’Definition’,
and ’Value’. If the value of a variable is constant and does not change after the network starts, its value is provided
in the ’Value’ column; otherwise, it is marked as ’-’.

Name Notation Description Value

Time t Time since the network launch in
seconds

-

Total Supply TotalSupply The total number of tokens to be
minted

10, 400, 000, 000

General Reward
per Second

GRPS(t) Reward for network participation per
second for all network participants at

time t

-

Total Minted
Token Amount

TMTA(t) The total number of minted tokens at
time t

-

Total Token
Minting Time

TTMT The expected time for minting the last
fraction of token in seconds

2, 000, 000, 000

Total Minted
Token Amount

Function
Coefficient

TMTAFC The parameter regulating the decay
rate of the Total Minted Token

Amount function

0.00001

Total Base Block
Keeper Reward Per

Second

TBBKRPS(t) Fraction of the reward GRPS allocated
to Block Keepers

-

Total Mobile
Verifier Reward

Per Second

TMVRPS(t) Fraction of the reward GRPS allocated
to Mobile Verifiers

-

Total Block
Manager Reward

Per Second

TBMRPS(t) Fraction of the reward GRPS allocated
to Block Managers

-

Base Block Keeper
Reward Function

Coefficient

BBKRFC The coefficient that determines the
fraction of the reward GRPS allocated

to Block Keepers

0.675

Mobile Verifier
Reward Function

Coefficient

MVRFC The coefficient that determines the
fraction of the reward GRPS allocated

to Mobile Verifiers

0.225

Block Manager
Reward Function

Coefficient

BMRFC The coefficient that determines the
fraction of the reward GRPS allocated

to Block Managers

0.1

Reputation
Coefficient

RepCoef Additional rewards granted to a Block
Keeper for continuous validation

-

Block Keeper
Reputation Time

BKRT The time during which the Block
Keeper has been continuously running

validation Epochs

-

Minimal
Reputation
Coefficient

minRC Minimal Reputation Coefficient 1

Maximal
Reputation
Coefficient

maxRC Maximal Reputation Coefficient 3

24

Name Notation Description Value

Maximal
Reputation Time

maxRT The time it takes for the Block Keeper
to accumulate maximum reputation
for continuous validation in seconds

157, 766, 400

Adjustment
Reputation
Function

Coefficient

ARFC The parameter regulating the rate of
reputation growth over time

1, 000

Block Keeper
Reward Per Second

BKRPS The reward earned by a Block Keeper
per second of validation, depending on

their stake and current Reputation
Coefficient

-

Block Keeper Stake BKStake The specific amount of tokens that a
Block Keeper has staked in order to

participate in validation

-

Total Block Keeper
Stake

TotalBKStake The sum of all Block Keeper Stakes at
time

-

Validation Epoch
Start Time

tval The time in seconds that has passed
from the moment the network was

launched until the start of a particular
Validation Epoch

-

Block Keeper
Reward per

Validation Epoche

BKRPVE The reward received by a Block
Keeper for one Validation Epoch

-

Block Keeper
Epoch Duration

BKED The duration of one validation Epoch
in seconds

-

Maximal Free
Float Fraction

maxFreeFloatFrac Maximal fraction of Free Float of
Total Supply

1/3

Free Float Fraction FreeFloatFrac(t) The current fraction of Free Float of
Total Supply

-

Free Float
Function

Coefficient

FFFC The parameter regulating the decay
rate of the FreeFloatFrac function

0.01

Needed Block
Keeper Number

NeedBKNum(t) The number of Block Keepers required
in the network at time t according to

the number of threads

-

Block Keepers
Number

BKNum(t) The number of Block Keepers in the
network at time t

-

Base Minimal
Block Keeper Stake

baseMinBKStake(t) Minimal Stake when the current
number of Block Keepers equals the
necessary number of Block Keepers

-

Total Staked Token
Amount

TSTA(t) The total number of tokens staked in
the network at time t

-

Block Keeper
Stake Function

Coefficient

BKSFC The coefficient that determines the
fraction of tokens that must be staked

by Block Keepers out of the Total
Staked Token Amount

0.675

Mobile Verifier
Stake Function

Coefficient

MVSFC The coefficient that determines the
fraction of tokens that must be staked
by Mobile Verifiers out of the Total

Staked Token Amount

0.225

25

Name Notation Description Value

Block Manager
Stake Function

Coefficient

BMSFC The coefficient that determines the
fraction of tokens that must be staked
by Block Managers out of the Total

Staked Token Amount

0.1

Acki-Nacki
Number

ANNum Average number of Acki-Nacki per
block

-

Attestation
Number

AtNum Number of attestations required for
block finalization

-

Malicious Block
Keeper Number

MalBKNum Expected number of malicious Block
Keepers

-

Successful Attack
Probability

SAP Successful attack probability in a
single attempt

-

Free Float Tokens FFT Current Free Float (in tokens) -

Free Float Tokens
Reduction

FFTReduction The coefficient describing how much
the Free Float (in tokens) decreased

after purchasing tokens for the attack

-

Maximum Attack
Attempts

MAA Maximum number of attack attempts
that the attacker can perform

-

Breaking Network
Probability

BNP The probability of performing a
successful attack on the network in

MAA attempts

-

Malicious Stake
Number

MalStakeNum The number of stakes that a malicious
Block Keeper needs to purchase for an

attack with a probability of BNP

-

Mobile Verifier
Number

MVNum The number of Mobile Verifiers in the
network

-

Malicious Mobile
Verifier Number

MalMVNum Expected number of malicious Mobile
Verifiers

-

Mobile Verifier
Verification
Frequency

λMV Fraction of blocks verified by Mobile
Verifiers

-

Mobile Verifier
Reward per Second

MVRPS Mobile Verifier Reward per Second
(accrued only on the condition of

owning at least one Boost)

-

Mobile Verifier
Stake

MVStake Mobile Verifier Stake -

Total Mobile
Verifier Stake

TotalMVStake Total Mobile Verifier Stake of all Block
Keepers who have at least one boost

-

Boost Coefficient BoostCoef A coefficient that determines the
fraction of the reward allocated to a
particular Mobile Verifier based on

their position in the sorted in
ascending order list of all Mobile
Verifiers by the number of boosts

-

Mobile Verifier
Successful Attack

Probability

SAPMV Successful attack probability in a
single attempt with Mobile Verifiers

-

Mobile Verifier
Reward History

MVRH Amount of tokens that Mobile Verifier
have earned during their entire
participation in the network

-

26

Name Notation Description Value

Minimal Mobile
Verifier Stake

minMVStake(t) Current minimal particular Mobile
Verifier stake

-

Mobile Verifier
Epoch Duration

MVED The duration of one Epoch of Mobile
Verifiers in seconds

-

Mobile Verifier
Reward per Epoche

MVRPE Reward received by a Mobile Verifier
per one Epoch

-

Verification Epoch
Start Time

tverf Time in seconds that has passed from
the moment the network was launched
until the start of a particular Epoch of

Mobile Verifiers

-

Block Manager
Reward per Second

BMRPS Block Manager Reward per Second -

External Messages
Coefficient

ExtMesCoef The coefficient that determines the
fraction of the reward allocated to a
particular Block Manager based on

their position in the sorted in
ascending order list of all Block

Managers by the number of processed
external messages

-

Block Manager
Reward History

BMRH Amount of tokens that Block Manager
have earned during their entire
participation in the network

-

Minimal Block
Managher Stake

minBMStake(t) Current minimal particular Block
Managher stake

-

Block Manager
Epoch Duration

BMED The duration of one Epoch of Block
Manager in seconds

-

Block Manager
Reward per Epoche

BMRPE Reward received by a Block Manager
per one Epoch

-

Management
Epoch Start Time

tmanage Time in seconds that has passed from
the moment the network was launched
until the start of a particular Epoch of

Block Managers

-

27

References

[1] Goroshevsky, M., Sattarov, N., Trepacheva, A.: Acki Nacki: A Probabilistic Proof-of-Stake Consensus Protocol
with Fast Finality and Parallelisation. In: International Conference on Applied Cryptography and Network Security.
pp. 43–62. Springer (2024), https://link.springer.com/chapter/10.1007/978-3-031-61486-6_4

[2] Jain, A., et al.: We might walk together, but I run faster: Network Fairness and Scalability in Blockchains. arXiv
preprint arXiv:2102.04326 (2021), https://arxiv.org/pdf/2102.04326

[3] King, S., Nadal, S.: Ppcoin: Peer-to-peer crypto-currency with proof-of-stake (Aug 19 2012), https://decred.
org/research/king2012.pdf

[4] Pass, R., Shi, E.: Fruitchains: A fair blockchain. In: Proceedings of the ACM Symposium on Principles of
Distributed Computing. pp. 315–324. ACM (2017), https://dl.acm.org/doi/10.1145/3087801.3087809

28

https://link.springer.com/chapter/10.1007/978-3-031-61486-6_4
https://arxiv.org/pdf/2102.04326
https://decred.org/research/king2012.pdf
https://decred.org/research/king2012.pdf
https://dl.acm.org/doi/10.1145/3087801.3087809

	Abstract
	Parameters
	Quick Facts
	Separation of Tokens
	NACKL Tokenomics
	Proof Of Stake
	Delegation
	Fairness

	Rewards
	General Reward
	Reputation Coefficient
	Block Keeper Reward
	Block Keeper Epoch Reward

	Free Float
	Block Keeper Min Stake
	Expected APR for Block Keepers
	Security Guarantees
	Mobile Verifiers
	Motivation
	Mobile Verifier Reward
	Boost Coefficient
	Form of the Exponential Curve
	Calculation of Parameters for the Piecewise Exponential Curve
	Calculation of the Boost Coefficient for Different Numbers of Mobile Verifiers

	Mobile Verifier Min Stake
	Mobile Verifier Epoch Reward

	Block Managers
	Block Manager Reward
	External Messages Coefficient
	Form of the Curve
	Calculation of Parameters for the Piecewise Curve
	Calculation of the External Messages Coefficient for Different Numbers of Block Managers

	Block Manager Min Stake
	Block Manager Epoch Reward

	SHELL — Equal or Less
	Glossary

